
MODEL OF INELASTIC SCATTERING OF AN ATOM BY A CRYSTAL SURFACE 

IN THE IMPULSE APPROXIMATION 

A. E. Galanov UDC 539.121.7 

w The aim of the work reported in the present communication was to obtain the differ- 
ential cross section for single scattering of an atom by a simple crystal. The interaction 
in the system is determined in the form of a sum of two-body potentials characterizing the 
interaction of the particle with the atoms of the crystal lattice. The processes leading to 
scattering are assumed to be weakly dependent on the processes responsible for binding and 
thermal equalization within the crystal. The Hamiltonian of the crystal is thus described 
in the harmonic approximation [I] and the scattering, in the impulse approximation with a 
"quasiclassical binding" [2, 3]. We assume that the velocities of the particle are large 
compared with the thermal velocities of the atoms of the lattice and that interference ef- 
fects are insignificant. Under these conditions the differential cross Section for scatter- 
ing in the range of angles d~ and energies dE2, referred to a single scattering center, has 
the form (h = i) [2] 

d~ k. i d'c' c--iE'~" <e--iku(O)oiku(z')\ eade------~. = ~ ( i  + tO"- IFI 2 /T, 
- - o o  

(i. 1) 

where ~ = m/M is the ratio of the mass of the particle to the mass of the atom of the lat- 
tice; k = kl -- k=, E = E~ -- E2 are, respectively, the change in the momentum and energy of 
the particle in a single collision~ u is the displacement of the center about the site posi- 
tion; F = F{~', ~), the single-particle scattering amplitude in a center-of-mass system (in- 
cident particle, scattering center), is taken outside the energy surface 

:e = kl/(l -',- ,a), • = (k~ -- pkt)/([ -i- ,tO; 

<...> denotes an average over the initial state of the crystal and an average over the canon- 
ical distribution for the given crystal temperature T. The conservation laws for the entire 
particle--crystal system are taken into account in the derivation of (i.i) [2]. Assuming that 
single collisions are due solely to collisions with topmost atoms, we separate out from 
the summation over all centers tee summation over topmost atoms alone. 

w In (i.i) the summation is over all final states. It is known [3], however, that 
inthe impulse approximation the cross section for each scattering direction k=/k2 has the 
form of sharp peaks only near states corresponding to recoil of the center as if it were free. 
Only transitions into such states will be taken into account~ their excitation energies we 
define as the real roots of the equations a~(E) = 0 or a:2(E) = a2(E), which are found in the 
following manner. 

From (I.i) we write down the expression for the autocorrelator in the phonon representa- 
tion [2 ] 

exp { j~-q 2NMo~j(kej (q))~(q) {(2nj(q)~-1> [cos(~j (q)~ ' ) - - l ] - [ - i  sin (r ~')}}, (2.1) 

where q, ~j(q), ej(q) are, respectively, the phonon wave vector, frequency, and polarization 
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vector; j is the polarization index; and <nj(q)> is the Planck distribution. Expanding the 
exponential in the integrand in (i.i) as series in r', we obtain, using (2.1), 

e --iE'c'/ ( T "~ } 
\ "  �9 ")T = exp - -  i a F (  - -  a.,. --if- + . . .  ; ( 2 . 2 )  

(kej (_qq))~ <(kp~)2) (kej (q))2 ~j . (q)  <2ns (q) + i>, ( 2 . 3 )  
at== E - - . ~ ,  2NM ' a~ = M------7~,:  Z 2 N M  

3.q j ,q  

w h e r e  Pv i s  t h e  s p e c i f i c  momentum o f  t h e  c e n t e r  b e f o r e  s c a t t e r i n g .  I t  i s  c l e a r  f r o m  t h e  f o r m  
o f  e x p a n s i o n  ( 2 . 2 )  t h a t  t h e  s u m m a t i o n  i n  a l  h a s  t h e  s i g n i f i c a n c e  o f  r e c o i l  e n e r g y ,  e q u a l  t o  
k2/2M o n l y  f o r  an  i s o t r o p i c  c r y s t a l ,  and  i s  c o n s e q u e n t l y  d e p e n d e n t  on t h e  d y n a m i c s  o f  t h e  
s u r f a c e .  E n e r g y  c o n s e r v a t i o n  f o r  t h r e e  b o d i e s  ( t h e  p a r t i c l e ,  a f i x e d  c e n t e r ,  and an  i n f i n i t e  
mass )  we a s s u m e  t o  be  e x p r e s s e d  by  t h e  e q u a t i o n  a l ( E )  = O. I n  t h e  c a s e  o f  a m o b i l e  ( i n  t h e  s i t e  
s y s t e m )  c e n t e r ,  i n  t h e  e q u a t i o n  E -- ka /2M = ( k p v ) / M  we r e p l a c e  t h e  l e f t  s i d e  by  a~ and p e r -  
f o r m  an  e n s e m b l e  a v e r a g e  o f  t h e  s q u a r e s  o f  b o t h  s i d e s .  The n e t  r e s u l t  i s  a 1 2 ( E )  = a 2 ( E ) .  

The a b o v e  m e t h o d  o f  d e s c r i b i n g  an  i n e l a s t i c  p r o c e s s  e n a b l e s  us  t o  o b v i a t e  a p r o b l e m  o f  
the utmost complexity -- the direct description of total multiphonon scattering. 

~3. We now construct a model of the dispersion of the scattered energy allowing for cer- 
tain basic properties of the reflection of phonons from two-dimensional defects [i]: for 
any vector q the energies h~(q) of excited phonons polarized along and perpendicular to the 
surface take on, respectively, values in the ranges from 0 to | and from 0 to ~| where 

~ i; | is the Debye temperature for the surface. The dispersion law is linear. 

The condition ~ ~ i comes about because the reflecting power of two-dimensional de- 
fects is only weakly dependent on the phonon wavelength ~ down to ~ > L, where L is the lin- 
ear dimension of the distortion [i]. For ~ << i (% >> a, where ~ is the lattice constant) 
normally polarized phonons are only weakly scattered by the defect and pass into the crystal. 
In this model conservation of periodicity along the surface leads to the removal and redis- 
tribution of a large part of E = E~ -- E= along the surface (with the dynamics of the harmonic 
approximation). We introduce the dimensionless quantities 

= EIO,~ ,  e l  = E I / @ , ~ ,  ~., = E.,t@,~, t = T l @ n ,  ~ = k .z lk l ,  "~ = "~'0~ 

and go in (2.1) and (2.3) from a summation over q to an integral. With the aid of the ~- 
model we obtain the following expressions for the integral in (i.I): 

S : j d're--~e~@--iku(~ = J &ccxp{iA 1 @ A 2 }  (3.1) 

and  f o r  a l(•  -- a l /@, ,  , a 2 ( •  = a2/6)~: 

3 
A~ = - -  ++ § ~-~ {et ( s in  ~ - -  ~ cos +) § e~ [s in  ( •  • cos (• 

3 + 3 
A.,  = -- T ( e t  z~en) @ -i- T -- . 7 { e t ( c o s ' c  ' sin'c t ) + e ~ [ c o s ( •  

+ " '  " dx x sill ~ (rxt2) . 
+ • 2 1 5  e t - '~e  n oxI) t ~ l t j - - I  ' 

a l  (•  = ~ - -  e t  - -  z3e~, 

, ' t" ~ x3dx 3 ' X4en) -;- 6 et -+- e,~ a 2 ( •  = - u ( e ~  ~ -  } . ~ ;  
0 ]  

et = el~ (sin z 01 -r- 1~ sin ~ O.z - -  2~ sin01 sin 0 z cos (qo 1 - -  q%)]; 

en =e l~ t ( c~  Oc~ +, e =  e 1 ( t - - ~ z ) ,  

(3.2) 

( 3 . 3 )  

(3.4) 

where e n + e t = eo is the reduced recoil energy of the free center; e t and e n are the parts 
of eo corresponding to the tangential and normal changes of momentum of the particle; 8~ , 
(p~and 02, ~2 are the directions of kl and k2 in a spherical system of coordinates whose z 
axis coincides with the external normal to the topmost plane of sites (z = 0); and 01 = ~--01! 
is the angle of incidence. 
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The integrals in (3.3) and (3.4) vanish for t = 0, while for t > I we have that 

a.,(• = 2t(e t + • -[- O((20t:)-'), 

U t i l i z i n g  e x p a n s i o n  ( 2 . 2 ) ,  we o b t a i n  t he  f o l l o w i n g  app rox ima te  e x p r e s s i o n s  fo r  S: 

(3.5) 

l [ /2a /a , ( •  for aa(•  
S : :  

[I' 2a/2.7t8a~(• for aT(• ::a.:(z). 
' / .~ o (3.6) 

The transition from the case with a mobile center to the case with a fixed center occurs when 
e t +~3e n ~ t. The expressions for S diverge only for ~ = 0; O= = 01, ~ -- et; qx = if2 (see 
Fig. i). 

In final form the results of the present work can be expressed as follows: 

d~ = (l  Jr rt): ~ ~i IF (~r (~i); • ~ S (e (~i); et (~i); e. (15~); • (3 .7 )  dQz fLi>0 

where d~2 = sin 02dO=d~2; S is given by expressions (3.1)-(3.3), (3.5), (3.6); and 8i are the 
roots of the equation 

3 ,~.3d.r [e(~)--e~(~)-- x3e,~(~)]'~=:--~ [et(~)q- • -~ 6 et + e,, (3.8) 

In this manner, the scattering of an atom by a crystal is reduced to a single-particle scat- 
tering problem. After normalizing in accordance with the optical theorem, the expression for 
the density of scattered particles P2(~2) ~ ZIFIaS can be used to obtain the various charac- 
teristics of single scattering. 

We illustrate results (3.7) and (3.8) on the example of scattering by rigid spheres. In 
this case IFI 2 = const and the angular dependence P2(~2) is determined by the form factor. 
In Fig. i we compare the curve P2(02, ~ = 0.i) with the experimental (unnormalized) diagram 
[4] for the scattering of argon from silver, El = 2.56 eV, T = 300~ 0x = 50 ~ , ql = q'2 = 0. 
For the silver surface | = 180=K- The different slopes of the curves near the surface are 
connected with scattering by a relief of microcrystals. 

For ~ = 0 the energy E is redistributed only along the surface. For ~ = I the form of 
P2(e=) corresponds to a freezing-in of the particles [the form of P2(02, T = 0, ~ = I) is 
similar to that of P2(02, T # 0, ~ = i)]. Since ~ = ~ (T) and since a certain equalization of 

the bindings in the topmost layer occurs as T + 0, it follows that ~increases. 
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The value of ~ is determined from experimental plots with saturation, for example, from 
A0=m(E1) = 61 -- 0am(El) for El > i0 eV [5], where 0=m is the direction of the peak. For rigid 
spheres we obtain 

• : :  [ ( s i n  02.~ - -  s i n  01) COS 02,,~1/[C0S 02~ -i- COS 01) Sill 02~], 

For ~ << i and any E~ the quantity 0= m ~ 01 only for rigid spheres; on going over to 
softer potentials A0= m becomes a function of El. With increasing E~ we have the narrowing 
of P2(e=) observed in [5]. 

We note that for El < 0.1 eV the problem has been investigated in a quantum formalism 
for elastic and single-phonon scattering by a one-dimensional potential wall [6]. Quantum 
model representations for energies El > 0.I eV are few [7]. Classical models are more widely 
used for these energies. It is considered in these models that for kla m i only multiply 
scattered particles reproduce the peak reflection by the wall [8]. 

However, particles experiencing above-barrier scattering in the crystal and multiple mix- 
ing in it give rise to a weak dependence of the peak on 91 [9]. The formation of such a peak 
is observed only for El in the range 100-400 eV [9]. Accordingly, for E < i00 eV we most 
probably have a solution of the gas in the crystal, with an accompanying diffusion of the 
particles to the surface and diffuse desorption of them with <E=> ~ El. Scattering by the 
relief is also diffuse in nature. 

It has been shown in a number of experiments over the last i0 years that the reflection 
of atoms of the noble gases with E~ up to i00 eV by controlled surfaces of simple single crys- 
tals has a single-peak quasispecular character [4, 5, 9]. In the present work the observed 
form of scattering is obtained for single collisions, and we suggest that quasispecular scat- 
tering is connected with the specifics of the recoil of surface centers. The obtained re- 
suits indicate that the noise [the contribution to P2(~=) from multiple, physically unobserv- 
able collisions] can be separated from the contribution due to single-reflected particles, 
which carry information on the dynamics and structure of the surface and on the interaction 
of the atom with the crystal. 

The author expresses his gratitude to A. Z. Patashinskii, A. V. Chaplik, I. A. Gilinskii, 
and Yu. D. Nagornyi for a useful discussion, and to A. M. Sedel'nikov for his assistance with 
the work. 
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